The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a means for combining fields from two tables by using values common to each. Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables in our SELECT statement as follows: SQL> SELECT ID, NAME, AGE, AMOUNT FROM CUSTOMERS, ORDERS WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+ Here it is noteable that the join is performed in the WHERE clause. Several operators can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join tables. However, the most common operator is the equal symbol. SQL Join Types: There are different type of joins available in SQL:
INNER JOIN The most frequently used and important of the joins is the INNER JOIN. They are also referred to as an EQUIJOIN. The INNER JOIN creates a new result table by combining column values of two tables (table1 and table2) based upon the join-predicate. The query compares each row of table1 with each row of table2 to find all pai rs of rows which satisfy the join-predicate. When the join-predicate is satisfied, column values for each matched pair of rows of A and B are combined into a result row. Syntax: The basic syntax of INNER JOIN is as follows: SELECT table1.column1, table2.column2... FROM table1 INNER JOIN table2 ON table1.common_filed = table2.common_field; Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ | OID | DATE | ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables using INNER JOIN as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +----+----------+--------+---------------------+ LEFT JOIN The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right table. This means that if the ON clause matches 0 (zero) records in right table, the join will still return a row in the result,but with NULL in each column from right table. This means that a left join returns all the values from the left table, plus matched values from the right table or NULL in case of no matching join predicate. Syntax: The basic syntax of LEFT JOIN is as follows: SELECT table1.column1, table2.column2... FROM table1 LEFT JOIN table2 ON table1.common_filed = table2.common_field; Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 |
| 6 | Komal | | 22 | MP | | 4500.00 | |
| 7 | Muffy | | 24 | Indore | | 10000.00 | |
+----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+--------------------+-------------+--------+ | OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables using LEFT JOIN as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+----------+--------+---------------------+ RIGHT JOIN The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the left table. This means that if the ON clause matches 0 (zero) records in left table, the join will still return a row in the result.but with NULL in each column from left table. This means that a right join returns all the values from the right table, plus matched values from the left table or NULL in case of no matching join predicate. Syntax: The basic syntax of RIGHT JOIN is as follows: SELECT table1.column1, table2.column2... FROM table1 RIGHT JOIN table2 ON table1.common_filed = table2.common_field; Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables using RIGHT JOIN as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID This would produce following result: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+ FULL JOIN The SQL FULL JOIN combines the results of both left and right outer joins. The joined table will contain all records from both tables, and fill in NULLs for missing matches on either side. Syntax: The basic syntax of FULL JOIN is as follows: SELECT table1.column1, table2.column2... FROM table1 FULL JOIN table2 ON table1.common_filed = table2.common_field; Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables using FULL JOIN as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS FULL JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+ If your Database does not support FULL JOIN like MySQL does not support FULL JOIN, then you can use UNION ALL clause to combile two JOINS as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID UNION ALL SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID SELF JOIN The SQL SELF JOIN is used to join a table to itself, as if the table were two tables, temporarily renaming at least one table in the SQL statement. Syntax: The basic syntax of SELF JOIN is as follows: SELECT a.column_name, b.column_name... FROM table1 a, table1 b WHERE a.common_filed = b.common_field; Here WHERE clause could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ Now let us join this table using SELF JOIN as follows: SQL> SELECT a.ID, b.NAME, a.SALARY FROM CUSTOMERS a, CUSTOMERS b WHERE a.SALARY < b.SALARY; This would produce following result: +----+----------+---------+ | ID | NAME | SALARY | +----+----------+---------+ | 2 | Ramesh | 1500.00 | | 2 | kaushik | 1500.00 | | 1 | Chaitali | 2000.00 | | 2 | Chaitali | 1500.00 | | 3 | Chaitali | 2000.00 | | 6 | Chaitali | 4500.00 | | 1 | Hardik | 2000.00 | | 2 | Hardik | 1500.00 | | 3 | Hardik | 2000.00 | | 4 | Hardik | 6500.00 | | 6 | Hardik | 4500.00 | | 1 | Komal | 2000.00 | | 2 | Komal | 1500.00 | | 3 | Komal | 2000.00 | | 1 | Muffy | 2000.00 | | 2 | Muffy | 1500.00 | | 3 | Muffy | 2000.00 | | 4 | Muffy | 6500.00 | | 5 | Muffy | 8500.00 | | 6 | Muffy | 4500.00 | +----+----------+---------+ CARTESIAN JOIN The CARTESIAN JOIN or CROSS JOIN returns the cartesian product of the sets of records from the two or more joined tables. Thus, it equates to an inner join where the join-condition always evaluates to True or where the join- condition is absent from the statement. Syntax: The basic syntax of INNER JOIN is as follows: SELECT table1.column1, table2.column2... FROM table1, table2 [, table3 ] Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables using INNER JOIN as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS, ORDERS; This would produce following result: +----+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+----------+--------+---------------------+ | 1 | Ramesh | 3000 | 2009-10-08 00:00:00 | | 1 | Ramesh | 1500 | 2009-10-08 00:00:00 | | 1 | Ramesh | 1560 | 2009-11-20 00:00:00 | | 1 | Ramesh | 2060 | 2008-05-20 00:00:00 | | 2 | Khilan | 3000 | 2009-10-08 00:00:00 | | 2 | Khilan | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 2 | Khilan | 2060 | 2008-05-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 3 | kaushik | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 2060 | 2008-05-20 00:00:00 | | 4 | Chaitali | 3000 | 2009-10-08 00:00:00 | | 4 | Chaitali | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | 3000 | 2009-10-08 00:00:00 | | 5 | Hardik | 1500 | 2009-10-08 00:00:00 | | 5 | Hardik | 1560 | 2009-11-20 00:00:00 | | 5 | Hardik | 2060 | 2008-05-20 00:00:00 | | 6 | Komal | 3000 | 2009-10-08 00:00:00 | | 6 | Komal | 1500 | 2009-10-08 00:00:00 | | 6 | Komal | 1560 | 2009-11-20 00:00:00 | | 6 | Komal | 2060 | 2008-05-20 00:00:00 | | 7 | Muffy | 3000 | 2009-10-08 00:00:00 | | 7 | Muffy | 1500 | 2009-10-08 00:00:00 | | 7 | Muffy | 1560 | 2009-11-20 00:00:00 | | 7 | Muffy | 2060 | 2008-05-20 00:00:00 | +----+----------+--------+---------------------+ SQL Unions Clause The SQL UNION clause/operator is used to combine the results of two or more SELECT statements without returning any duplicate rows. To use UNION, each SELECT must have the same number of columns selected, the same number of column expressions, the same data type, and have them in the same order but they do not have to be the same length. Syntax: The basic syntax of UNION is as follows: SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] UNION SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables in our SELECT statement as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID UNION SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +------+----------+--------+---------------------+ The UNION ALL Clause: The UNION ALL operator is used to combine the results of two SELECT statements including duplicate rows. The same rules that apply to UNION apply to the UNION ALL operator. Syntax: The basic syntax of UNION ALL is as follows: SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] UNION ALL SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables in our SELECT statement as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID UNION ALL SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +------+----------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+----------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | +------+----------+--------+---------------------+ There are two other clauses (i.e operators ) which are very similar to UNION clause:
INTERSECT Clause The SQL INTERSECT clause/operator is used to combine two SELECT statements, but returns rows only from the first SELECT statement that are identical to a row in the second SELECT statement. This means INTERSECT returns only common rows returned by the two SELECT statements. Just as with the UNION operator, the same rules apply when using the INTERSECT operator. MySQL does not support INTERSECT operator Syntax: The basic syntax of INTERSECT is as follows: SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] INTERSECT SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables in our SELECT statement as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID INTERSECT SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +------+---------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +------+---------+--------+---------------------+ | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Ramesh | 1560 | 2009-11-20 00:00:00 | | 4 | kaushik | 2060 | 2008-05-20 00:00:00 | +------+---------+--------+---------------------+ EXCEPT Clause The SQL EXCEPT clause/operator is used to combine two SELECT statements and returns rows from the first SELECT statement that are not returned by the second SELECT statement. This means EXCEPT returns only rows which are not available in second SELECT statement. Just as with the UNION operator, the same rules apply when using the EXCEPT operator. MySQL does not support EXCEPT operator. Syntax: The basic syntax of INTERSECT is as follows: SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] EXCEPT SELECT column1 [, column2 ] FROM table1 [, table2 ] [WHERE condition] Here given condition could be any given expression based on your requirement. Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now let us join these two tables in our SELECT statement as follows: SQL> SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID EXCEPT SELECT ID, NAME, AMOUNT, DATE FROM CUSTOMERS RIGHT JOIN ORDERS ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; This would produce following result: +----+---------+--------+---------------------+ | ID | NAME | AMOUNT | DATE | +----+---------+--------+---------------------+ | 1 | Ramesh | NULL | NULL | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | +----+---------+--------+---------------------+ SQL NULL Values The SQL NULL is the term used to represent a missing value. A NULL value in a table is a value in a field that appears to be blank. A field with a NULL value is a field with no value. It is very important to understand that a NULL value is differen t than a zero value or a field that contains spaces. Syntax: The basic syntax of NULL while creating a table: SQL> CREATE TABLE CUSTOMERS( ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID) ); Here NOT NULL signifies that column should always accept an explicit value of the given data type. There are two column where we did not use NOT NULL which means these column could be NULL. A field with a NULL value is one that has been left blank during record creation. Example: The NULL value can cause problems when selecting data, however, because when comparing an unknown value to any other value, the result is always unknown and not included in the final results. You must use the IS NULL or IS NOT NULL operators in order to check for a NULL value. Consider following table, CUSTOMERS having following records: +---+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 |
| | 5 | | | Hardik | | | 27 | | | Bhopal | | | 8500.00 | | |
| | 6 | | | Komal | | | 22 | | | MP | | | | | |
| | 7 | | | Muffy | | | 24 | | | Indore | | | | |
+----+----------+-----+-----------+----------+ Now following is the usage of IS NOT NULL operator: SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS WHERE SALARY IS NOT NULL; This would produce following result: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | +----+----------+-----+-----------+----------+ Now following is the usage of IS NULL operator: SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY FROM CUSTOMERS WHERE SALARY IS NULL; This would produce following result: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 6 | Komal | 22 | MP | | | 7 | Muffy | 24 | Indore | | +----+----------+-----+-----------+---------- SQL Alias Syntax You can rename a table or a column temporarily by giving another name known as alias. The use of table aliases means to rename a table in a particular SQL statement. The renaming is a temporary change and the actual table name does not change in the database. The column aliases are used to rename a table's columns for the purpose of a particular SQL query. Syntax: The basic syntax of table alias is as follows: SELECT column1, column2.... FROM table_name AS alias_name WHERE [condition]; The basic syntax of column alias is as follows: SELECT column_name AS alias_name FROM table_name WHERE [condition]; Example: Consider following two tables, (a) CUSTOMERS table is as follows: +----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+ (b) Another table is ORDERS as follows: +-----+---------------------+-------------+--------+ |OID | DATE | CUSTOMER_ID | AMOUNT | +-----+---------------------+-------------+--------+ | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-20 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | +-----+---------------------+-------------+--------+ Now following is the usage of table alias: SQL> SELECT C.ID, C.NAME, C.AGE, O.AMOUNT FROM CUSTOMERS AS C, ORDERS AS O WHERE C.ID = O.CUSTOMER_ID; This would produce following result: +----+----------+-----+--------+ | ID | NAME | AGE | AMOUNT | +----+----------+-----+--------+ | 3 | kaushik | 23 | 3000 | | 3 | kaushik | 23 | 1500 | | 2 | Khilan | 25 | 1560 | | 4 | Chaitali | 25 | 2060 | +----+----------+-----+--------+ Following is the usage of column alias: SQL> SELECT ID AS CUSTOMER_ID, NAME AS CUSTOMER_NAME FROM CUSTOMERS WHERE SALARY IS NOT NULL; This would produce following result: +-------------+---------------+ | CUSTOMER_ID | CUSTOMER_NAME | +-------------+---------------+ | 1 | Ramesh | | 2 | Khilan | | 3 | kaushik | | 4 | Chaitali | | 5 | Hardik | | 6 | Komal | | 7 | Muffy | +-------------+---------------+
You liked the article?
Like: 0
Vote for difficulty
Current difficulty (Avg): Medium
TekSlate is the best online training provider in delivering world-class IT skills to individuals and corporates from all parts of the globe. We are proven experts in accumulating every need of an IT skills upgrade aspirant and have delivered excellent services. We aim to bring you all the essentials to learn and master new technologies in the market with our articles, blogs, and videos. Build your career success with us, enhancing most in-demand skills in the market.